دوره 14، شماره 1 - ( 10-1403 )                   جلد 14 شماره 1 صفحات 263-255 | برگشت به فهرست نسخه ها

Ethics code: IR.SSU.SPH.REC.1400.169


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Miri M, Lotfi M, Falahzadeh H, Madadizadeh F. Application of Time-Series SIR Models in Analyzing the COVID-19 Pandemic in Iran: A Case Study of Data from February 2020 to December 2023. JCHR 2025; 14 (1) :255-263
URL: http://jhr.ssu.ac.ir/article-1-1182-fa.html
لطفی محمدحسن. Application of Time-Series SIR Models in Analyzing the COVID-19 Pandemic in Iran: A Case Study of Data from February 2020 to December 2023. مجله تحقیقات سلامت. 1403; 14 (1) :255-263

URL: http://jhr.ssu.ac.ir/article-1-1182-fa.html


چکیده:   (177 مشاهده)
Background: The COVID-19 pandemic underscored the critical need for advanced modeling approaches to elucidate transmission dynamics and inform public health strategy. This study employed a Time-Series Susceptible-Infected-Recovered (TSIR) model to quantitatively analyze the pandemic trajectory in Iran and estimate the time-varying basic reproduction number (R₀) from February 2020 to December 2023.
Methods: In an analytical cross-sectional study, comprehensive national COVID-19 data were obtained from the Iranian Ministry of Health and validated international repositories. The TSIR framework was implemented using R software (v4.0.0) to estimate transmission parameters (β, γ) and reconstruct epidemic dynamics. Vaccination impact was assessed through comparative analysis of compartmental populations pre- and post-vaccination deployment.
Results: Analysis of 1,373 surveillance days revealed 7,625,160 confirmed cases with 146,741 fatalities (CFR: 2%). The TSIR model demonstrated superior tracking of seven distinct epidemic waves, with R₀ estimates declining to 0.2 during 2022-2023. Statistical analysis confirmed significant compartmental shifts post-vaccination (p<0.001), indicating substantial intervention impact. Moreover, model validation showed robust performance across multiple epidemic phases.
Conclusion: The TSIR model provides a validated framework for epidemic monitoring and evaluation of public health interventions in Iran. The sub-critical R₀ values observed during the study's conclusion reflect successful containment through combined vaccination and control measures. Therefore, integration of time-series epidemiological modeling into national surveillance systems is recommended for enhanced preparedness against future infectious disease threats.

 
     
مروری: پژوهشي | موضوع مقاله: اپیدمیولوژی
دریافت: 1404/8/18 | پذیرش: 1404/8/21 | انتشار: 1403/10/23

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله تحقیقات سلامت می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2026 CC BY 4.0 | Journal of Community Health Research

Designed & Developed by : Yektaweb