دوره 10، شماره 3 - ( 5-1400 )                   جلد 10 شماره 3 صفحات 280-270 | برگشت به فهرست نسخه ها


XML Print


1- گروه سلامت در بلایا و حوادث، دانشکده پزشکی ، دانشگاه علوم پزشکی کردستان ، سنندج، ایران
2- گروه سلامت در بلایا و حوادث ، دانشکده بهداشت ، دانشگاه علوم پزشکی شهید صدوقی، یزد، ایران مرکز تحقیقات علوم و فناوری محیط زیست ، گروه مهندسی بهداشت محیط ، دانشگاه علوم پزشکی شهید صدوقی ، یزد ، ایران ، sd.fallah@gmail.com
3- گروه مهندسی بهداشت حرفه ای ، دانشکده بهداشت ، دانشگاه علوم پزشکی تهران ، تهران ، ایران
چکیده:   (1660 مشاهده)
چکیده

 مقدمه: تاکنون تعداد زیادی از افراد در سراسر جهان به بیماری کرونا مبتلا شده اند و تقریباً همه کشورها موارد ابتلا و موارد مرگ را گزارش کرده اند. برخی مطالعات نشان داده اند که ویروس کرونا به دمای هوا حساس است و در دمای بالا گسترش بیماری کاهش می یابد. این مطالعه با  انجام مرور نظام مند به بررسی تاثیر دما بر انتشار COVID-19 می پردازد.
روش کار: در این مطالعه ، جستجو در سه پایگاه داده الکترونیکی علمی اصلی ، از جمله Scopus ، PubMed ، Web of Science و همچنین Scholar Google در 14 آوریل 2020 برای یافتن مطالعات مرتبط با کووید-19 و گسترش آن در دماهای مختلف محیط انجام شد.
یافته ها: در مجموع 588 مقاله برای غربالگری و 27 مقاله برای استخراج داده ها انتخاب شد. نتیجه برخی از این مطالعات نشان داد که تغییرات آب و هوایی می تواند بر انتقال ویروس کرونا تأثیر بگذارد. دمای پایین و رطوبت کم ممکن است عوامل اساسی برای بقای ویروس کرونا باشند. ممکن است  این ویروس در دمای 4 درجه سانتی گراد شرایط  ایده آلی برای ادامه حیات داشته باشد و به دمای 70 درجه سانتی گراد نیز حساس باشد. بر اساس یافته های برخی از این مقاله های بررسی شده ، افزایش دمای سطوح فولاد ضد زنگ، چوب، پارچه ها و فلزات می تواند در از بین بردن کروناویروس ها موثر باشد.
نتیجه گیری: این مطالعه مروری نتوانست تأثیردقیق دما یا رطوبت را برای جلوگیری از گسترش و انتقال ویروس گزارش دهد. لازم است مطالعات بیشتری در این زمینه با داده های بیشتری انجام شود تا الگوی دقیق انتقال با بررسی شرایط ویروس در شرایط مختلف آب و هوایی معرفی شود.
 
 
     
مروری: مروری | موضوع مقاله: بهداشت محیط
دریافت: 1399/3/7 | پذیرش: 1400/4/28 | انتشار: 1400/7/7

فهرست منابع
1. Hua J, Shaw R. Corona Virus (COVID-19)"Infodemic" and Emerging Issues through a Data Lens: The Case of China. International journal of environmental research and public health. 2020;17(7):2309. [DOI:10.3390/ijerph17072309]
2. Prasad A. Local Immunity Concept in the Context of the Novel Corona Viral Infection: A Consideration. Asian Journal of Immunology. 2020:16-25.
3. Novel CPERE. The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19) in China. Zhonghua liu xing bing xue za zhi= Zhonghua liuxingbingxue zazhi. 2020;41(2):145. [DOI:10.46234/ccdcw2020.032]
4. Yang P, Wang X. COVID-19: a new challenge for human beings. Cellular & Molecular Immunology. 2020;17(5):555-7. [DOI:10.1038/s41423-020-0407-x]
5. Fong I. Climate Change: Impact on Health and Infectious Diseases Globally. Current Trends and Concerns in Infectious Diseases: Springer; 2020:165-90. [DOI:10.1007/978-3-030-36966-8_7]
6. Khan N, Fahad S, Naushad M, et al. Explanation of Corona Virus Control Novel by Warm and Humid Seasons in the World. Available at SSRN 3561155. 2020. [DOI:10.2139/ssrn.3561155]
7. Shi P, Dong Y, Yan H, et al. The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak-evidence from China. medRxiv. 2020. [DOI:10.1101/2020.03.22.20038919]
8. Bu J, Peng D-D, Xiao H, et al. Analysis of meteorological conditions and prediction of epidemic trend of 2019-nCoV infection in 2020. medRxiv. 2020. [DOI:10.1101/2020.02.13.20022715]
9. Al-Rousan N, Al-Najjar H. Nowcasting and Forecasting the Spreading of Novel Coronavirus 2019-nCoV and its Association With Weather Variables in 30 Chinese Provinces: A Case Study. Available at SSRN 3537084. 2020. [DOI:10.2139/ssrn.3537084]
10. Caspi G, Shalit U, Kristensen SL, et al. Rossenberg O, et al. Climate effect on COVID-19 spread rate: an online surveillance tool. medRxiv. 2020. [DOI:10.1101/2020.03.26.20044727]
11. Casanova LM, Jeon S, Rutala WA, et al. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol. 2010;76(9):2712-7. [DOI:10.1128/AEM.02291-09]
12. Van Doremalen N, Bushmaker T, Munster V. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance. 2013;18(38):20590. [DOI:10.2807/1560-7917.ES2013.18.38.20590]
13. Fallah Aliabadi S, Sarsangi A, Modiri E. The social and physical vulnerability assessment of old texture against earthquake (case study: Fahadan district in Yazd City). Arabian Journal of Geosciences. 2015;8(12):10775-87. [DOI:10.1007/s12517-015-1939-8]
14. Jia J, Ding J, Liu S, et al. Modeling the Control of COVID-19: Impact of Policy Interventions and Meteorological Factors. arXiv preprint arXiv:200302985. 2020.
15. Welch V, Petticrew M, Tugwell P, et al. PRISMA-Equity 2012 extension: reporting guidelines for systematic reviews with a focus on health equity. PLoS medicine. 2012;9(10):e1001333. [DOI:10.1371/journal.pmed.1001333]
16. Shamseer L MD, Clarke M, Ghersi D, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. British Medical Journal. 2015;2:7647. [DOI:10.1136/bmj.g7647]
17. Fenton L, Lauckner H, Gilbert R. The QATSDD critical appraisal tool: comments and critiques. Journal of Evaluation in Clinical Practice. 2015;21(6):1125-8. [DOI:10.1111/jep.12487]
18. Cai Y, Huang T, Liu X, et al. The Effects of" Fangcang, Huoshenshan, and Leishenshan" Makeshift Hospitals and Temperature on the Mortality of COVID-19. medRxiv. 2020. [DOI:10.1101/2020.02.26.20028472]
19. Wang J, Tang K, Feng K, et al. High Temperature and High Humidity Reduce the Transmission of COVID-19. Available at SSRN 3551767. 2020. [DOI:10.2139/ssrn.3551767]
20. Deng YB, Jiang X, Deng XY, et al. Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPAR gamma/NF-kappa B/IL-6 signaling pathway. Genes & Diseases. 2020;7(2):253-65. [DOI:10.1016/j.gendis.2019.05.002]
21. Luo W, Majumder MS, Liu D, et al. The role of absolute humidity on transmission rates of the COVID-19 outbreak. medRxiv. 2020. [DOI:10.1101/2020.02.12.20022467]
22. Poirier C, Luo W, Majumder MS, et al. The Role of Environmental Factors on Transmission Rates of the COVID-19 Outbreak: An Initial Assessment in Two Spatial Scales. Available at SSRN 3552677. 2020;10(1):1-1 [DOI:10.2139/ssrn.3552677]
23. Oliveiros B, Caramelo L, Ferreira NC, Caramelo F. Role of temperature and humidity in the modulation of the doubling time of COVID-19 cases. medRxiv. 2020. [DOI:10.1101/2020.03.05.20031872]
24. Wang M, Jiang A, Gong L, Luo L, Guo W, Li C, et al. Temperature significant change COVID-19 Transmission in 429 cities. medRxiv. 2020. [DOI:10.1101/2020.02.22.20025791]
25. Nazari Harmooshi N, Shirbandi K, Rahim F. Environmental Concern Regarding the Effect of Humidity and Temperature on SARS-COV-2 (COVID-19) Survival: Fact or Fiction. Kiarash and Rahim, Fakher, Environmental Concern Regarding the Effect of Humidity and Temperature on SARS-COV-2 (COVID-19) Survival: Fact or Fiction (March 29, 2020). 2020. [DOI:10.2139/ssrn.3563403]
26. Zhu Y, Xie J. Association between ambient temperature and COVID-19 infection in 122 cities from China. Science of The Total Environment. 2020;724:138201 [DOI:10.1016/j.scitotenv.2020.138201]
27. Tosepu R, Gunawan J, Effendy DS, et al. Correlation between weather and Covid-19 pandemic in Jakarta, Indonesia. Science of The Total Environment. 2020;725:138436.. [DOI:10.1016/j.scitotenv.2020.138436]
28. Moghadami M, Hassanzadeh M, Hedayati A, et al. Modeling for Corona Virus Outbreak in IRAN. medRxiv. 2020. [DOI:10.1101/2020.03.24.20041095]
29. Ma Y, Zhao Y, Liu J, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Science of The Total Environment 2020;724:138226 [DOI:10.1016/j.scitotenv.2020.138226]
30. Jamil T, Alam I, Gojobori T, et al. No Evidence for Temperature-Dependence of the COVID-19 Epidemic. 2020;8:436 [DOI:10.3389/fpubh.2020.00436]
31. Bannister-Tyrrell M, Meyer A, Faverjon C, et al. Preliminary evidence that higher temperatures are associated with lower incidence of COVID-19, for cases reported globally up to 29th February 2020. medRxiv. 2020. [DOI:10.1101/2020.03.18.20036731]
32. Harbert RS, Cunningham SW, Tessler M. Spatial modeling cannot currently differentiate SARS-CoV-2 coronavirus and human distributions on the basis of climate in the United States. medRxiv. 2020. [DOI:10.1101/2020.04.08.20057281]
33. Chin A, Chu J, Perera M, et al. Stability of SARS-CoV-2 in different environmental conditions. medRxiv. 2020. [DOI:10.1101/2020.03.15.20036673]
34. Baker RE, Yang W, Vecchi GA, et al. Susceptible supply limits the role of climate in the COVID-19 pandemic. medRxiv. 2020. [DOI:10.1101/2020.04.03.20052787]
35. Alvarez-Ramirez J, Meraz M. Role of meteorological temperature and relative humidity in the January-February 2020 propagation of 2019-nCoV in Wuhan, China. medRxiv. 2020. [DOI:10.1101/2020.03.19.20039164]
36. Notari A. Temperature dependence of COVID-19 transmission. arXiv preprint arXiv: 2021;763:144390. [DOI:10.1016/j.scitotenv.2020.144390]
37. Sajadi MM, Habibzadeh P, Vintzileos A, et al. Temperature and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. Available at SSRN 3550308. 2020. [DOI:10.2139/ssrn.3550308]
38. Islam N, Shabnam S, Erzurumluoglu AM. Temperature, humidity, and wind speed are associated with lower Covid-19 incidence. medRxiv. 2020. [DOI:10.1101/2020.03.27.20045658]
39. Anis A. The Effect of Temperature Upon Transmission of COVID-19: Australia And Egypt Case Study. Available at SSRN 3567639. 2020. [DOI:10.2139/ssrn.3567639]
40. Bukhari Q, Jameel Y. Will coronavirus pandemic diminish by summer? Available at SSRN 3556998. 2020. [DOI:10.2139/ssrn.3556998]
41. Araujo MB, Naimi B. Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. medRxiv. 2020. [DOI:10.1101/2020.03.12.20034728]
42. Ficetola GF, Rubolini D. Climate affects global patterns of COVID-19 early outbreak dynamics. medRxiv. 2020.
43. Xu XW, Wu XX, Jiang XG, et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: retrospective case series. Bmj-British Medical Journal. 2020;368.
44. Gardner EG, Kelton D, Poljak Z, et al. A case-crossover analysis of the impact of weather on primary cases of Middle East respiratory syndrome. BMC infectious diseases. 2019;19(1):113. [DOI:10.1186/s12879-019-3729-5]
45. Chan K, Peiris J, Lam S, et al. The effects of temperature and relative humidity on the viability of the SARS coronavirus. Advances in virology. 2011;2011. [DOI:10.1155/2011/734690]
46. Kim SW, Ramakrishnan M, Raynor PC, et al. Effects of humidity and other factors on the generation and sampling of a coronavirus aerosol. Aerobiologia. 2007;23(4):239-48. [DOI:10.1007/s10453-007-9068-9]
47. Guionie O, Courtillon C, Allee C, et al. An experimental study of the survival of turkey coronavirus at room temperature and+ 4° C. Avian pathology. 2013;42(3):248-52. [DOI:10.1080/03079457.2013.779364]
48. Altamimi A, Ahmed AE. Climate factors and incidence of Middle East respiratory syndrome coronavirus. Journal of Infection and Public Health. 2020;13(5):704-8 [DOI:10.1016/j.jiph.2019.11.011]
49. Simmering JE, Polgreen LA, et al. Weather-dependent risk for Legionnaires' disease, United States. Emerging infectious diseases. 2017;23(11):1843. [DOI:10.3201/eid2311.170137]
50. Alghamdi IG, Hussain II, Almalki SS, et al. The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. International journal of general medicine. 2014;7:417. [DOI:10.2147/IJGM.S67061]
51. van der Lans AA, Boon MR, Haks MC, et al. Cold acclimation affects immune composition in skeletal muscle of healthy lean subjects. Physiological reports. 2015;3(7):e12394. [DOI:10.14814/phy2.12394]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution 4.0 International License قابل بازنشر است.