Population Attributable Fraction of Ischemic Heart Disease Associated to Hypertension in The Middle East and North Africa

Marzieh Mirzajani¹, Masoud Mirzaei*²

¹ Zanjan University of Medical Sciences, Zanjan, Iran
² Yazd Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

Received: 2015/5/17 Accepted: 2015/6/9

Abstract

Introduction: Ischemic Heart Disease (IHD) has been increasing in the Middle East and North Africa. Hypertension is an important modifiable risk factor of IHD and plays an important role in the epidemic of IHD. Hypertension is responsible for about 45% of IHD mortality and affects more than one billion people around the world. This study aimed to quantify the population attributable fraction PAF of IHD due to hypertension in the Middle East and North Africa (MENA).

Materials & Methods: Sex-specific prevalence of hypertension was obtained from national and international studies. Moreover, age-adjusted hazard ratio (HR) of IHD and hypertension was extracted from the Tehran Lipid and Glucose Study (TLGS). HR and sex-specific prevalence of hypertension were used to calculate PAF of IHD due to hypertension in various countries of the region.

Results: The sex-specific prevalence of hypertension was available for seventeen countries of the region. Hypertension ranged from 4.5% in Palestine to 47% in Algeria in females and from 2.2% in Palestine to 50.7% in Oman in males. The fraction of IHD attributable to hypertension ranged from 4.3% in Palestine to 32% in Algeria in females and from 2.2% in Palestine to 33.7% in Oman in males.

Conclusion: Up to 33% IHD male’s mortality attributable to hypertension. It seems that hypertension is increasing in MENA and prevention programs are needed to control prevalence IHD.

Keywords: Population attributable fraction, Ischemic Heart Disease, Hypertension, Middle East, North Africa

* Corresponding author; Tel: 09134509917, E-mail: mmirzaei@ssu.ac.ir
Introduction

Ischemic Heart Disease (IHD) is the leading cause of death in developed regions with 1.4 million and developing countries with 5.7 million deaths annually. Age-standardize IHD death rate has decreased in high-income countries over the last five decades (Mirzaei, 2009-Heart). on the other hand urbanization and lifestyle change may increase the number of IHD death in some low and middle income countries(1).

Hypertension is a major risk factor of IHD and play an important role in the epidemic of IHD (Taylor Mirzaei 2006)(1,2). Hypertension or high blood pleasure is one of the important modifiable risk factor that affects cardiovascular disease and cerebrovascular around the world (3-5). Hypertension affects 79 million people in the United State and one billion people world wild (5). In 2010, high blood pressure was leading 7.0% of global DALYs and also causes 9.4 million death worldwide (6). In 2000, about 1billion people lived with Hypertension which predicted to increase 1.56billion by 2025 (7) In 1999 to 2010, the prevalence of hypertension was reported 30.5% among men and 28.5% among women (8). In 2008, six million people lived with diagnosed hypertension in Canada (9). Of all death, 16.5% is related to hypertension (10). Hypertension is responsible for about 45% of IHD and 51% of stroke mortality (11). The prevalence of hypertension is lower (35%) in high-income countries compared to other countries (40%) (10, 11). Hypertension and its related cardiovascular diseases cause major global burden of disease and 8.1% of disability adjusted life years (DALYs) related to hypertension and its attributable cardiovascular disease(12). Rising hypertension causes increase in mortality of coronary heart disease among aged 45-65 years old in both sexes (13).Control of high blood pressure could prevent About 19% of coronary heart disease in males and 31% of coronary heart disease in females (14).

Little is known about IHD attributed to hypertension in the Middle East. This study was designed to quantify the fraction of IHD related to hypertension in the Middle East by estimation of the population attributable risk (PAFs).

Materials & Methods

This is a cross sectional study and the aim of study is to calculate PAF of Ischemic Heart Disease due to hypertension.

According to WHO definition: PAF is proportional to reduction in population disease mortality that would occur if exposure to a risk factor was reduced to an alternative ideal exposure scenario (15).

To calculate PAF estimate of sex and age-specific prevalence of hypertension is required. Data on the sex-specific prevalence of hypertension extracted for seventeen countries including Bahrain, Iran, Kuwait, Lebanon, Oman, Palestine, Qatar, Saudi Arabia, Syria,
Turkey, United Emirates, Yemen, Algeria, Egypt, Libya, Morocco and Tunisia. Moreover, estimate of Hazard Ratio of IHD associated with hypertension is required.

Prevalence: The sex-specific prevalence of hypertension data was gathered separately for each country in Middle East and North Africa by searching in MEDLINE, national surveys and WHO Global Info base. In MEDLINE search, using prevalence, epidemiology, hypertension or blood pressure and name of countries of the region were figured out. The relevant data were extracted from nationally representative hypertension data from WHO or ministries of health databases.

Hypertension was defined as diastolic blood pressure (DBP)>140 and systolic blood pressure (SBP)>90. Also hypertension was considered ICD9 codes 401 to 409 and ICD10 codes I10 to I15 (5).

Hazard Ratio: Estimate of hazard ratio of hypertension for fatal IHD was required and obtained from the Tehran Lipid and Glucose Study (16). There are few prospective studies on IHD and its risk factors in the MENA region. Tehran Lipid and Glucose Study (TLGS) is one of the largest of its kind in the region and can be representative of MENA region because the estimates come from the same region. The study divided into two sections, first a cross-sectional study followed by a 10 years cohort study including (about 17,000) people in MENA. The details of the study were published elsewhere (17).

According to TLGS study, the estimate of hazard ratio with 95% confidence interval for coronary heart disease and hypertension was reported 1.8 (1.4- 2.2) for males and 2.1 (1.6-2.8) for females (18).

The formula used to calculate PAF (%) was:

\[\frac{100 \times \text{prevalence} \times (\text{HR} - 1)}{100 + \text{prevalence} \times (\text{HR} - 1)} \]

(Results)

Table1 demonstrate sex-specific prevalence of hypertension in seventeen countries of the MENA region. Data from Iraq and Jordan were not available. For Bahrain and Lebanon, only prevalence of SBP was available and used.

The prevalence of hypertension in MENA were reported from 4.5% in Palestine (20) to 47% in Algeria (21) in females and from 2.2% in Palestine (20) to 50.7% in Oman (22) in males (Figure1).
Figure 2 shows the population attributable fraction (PAF) of IHD due to hypertension for males and females separately, it ranged from 4.3% in Palestine to 32% Algeria among females and from 2.2% in Palestine to 33.7% in Oman in males.
Figure 1: Prevalence of hypertension in Middle East and North Africa region by sex

<table>
<thead>
<tr>
<th>Country</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palestine-2011</td>
<td>4.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Kuwait-1996</td>
<td>6.5</td>
<td>4.7</td>
</tr>
<tr>
<td>United Arab Emirates-2008</td>
<td>20</td>
<td>13</td>
</tr>
<tr>
<td>Lebanon-2013</td>
<td>28.6</td>
<td>24.7</td>
</tr>
<tr>
<td>Iran-2009</td>
<td>28.9</td>
<td>25.7</td>
</tr>
<tr>
<td>Egypt-1999</td>
<td>14.3</td>
<td>27.5</td>
</tr>
<tr>
<td>Bahrain-2014</td>
<td>23.9</td>
<td>28.6</td>
</tr>
<tr>
<td>Saudi Arabia-2007</td>
<td>23</td>
<td>29.3</td>
</tr>
<tr>
<td>Yemen-2008</td>
<td>37</td>
<td>30.2</td>
</tr>
<tr>
<td>Morocco-2003</td>
<td>31.7</td>
<td>32.6</td>
</tr>
<tr>
<td>Qatar-2004</td>
<td>47</td>
<td>41</td>
</tr>
<tr>
<td>Algeria-2007</td>
<td>46.1</td>
<td>41.6</td>
</tr>
<tr>
<td>Turkey-2008</td>
<td>35.6</td>
<td>45.8</td>
</tr>
<tr>
<td>Libya-2010</td>
<td>34.9</td>
<td>47.4</td>
</tr>
<tr>
<td>Syria-2007</td>
<td>38.7</td>
<td>48.2</td>
</tr>
<tr>
<td>Tunisia-2005</td>
<td>31</td>
<td>50.7</td>
</tr>
<tr>
<td>Oman-2012</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Population attributable fraction (%) of heart disease caused by hypertension

<table>
<thead>
<tr>
<th>Country</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palestine</td>
<td>16.7</td>
<td>4.3</td>
</tr>
<tr>
<td>Kuwait</td>
<td>11.5</td>
<td>2.2</td>
</tr>
<tr>
<td>United Arab Emirates</td>
<td>22.3</td>
<td>6.1</td>
</tr>
<tr>
<td>Lebanon</td>
<td>22.4</td>
<td>17.9</td>
</tr>
<tr>
<td>Iran</td>
<td>19.3</td>
<td>18.8</td>
</tr>
<tr>
<td>Egypt</td>
<td>18.7</td>
<td>19.8</td>
</tr>
<tr>
<td>Bahrain</td>
<td>22.7</td>
<td>20.5</td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>23.2</td>
<td>21.6</td>
</tr>
<tr>
<td>Yemen</td>
<td>24.6</td>
<td>22.2</td>
</tr>
<tr>
<td>Morocco</td>
<td>29.1</td>
<td>22.7</td>
</tr>
<tr>
<td>Qatar</td>
<td>29.4</td>
<td>23.2</td>
</tr>
<tr>
<td>Algeria</td>
<td>31.4</td>
<td>24.6</td>
</tr>
<tr>
<td>Turkey</td>
<td>32.2</td>
<td>29.4</td>
</tr>
<tr>
<td>Libya</td>
<td>32.5</td>
<td>31.4</td>
</tr>
<tr>
<td>Syria</td>
<td></td>
<td>32.2</td>
</tr>
<tr>
<td>Tunisia</td>
<td>33.7</td>
<td>32.5</td>
</tr>
<tr>
<td>Oman</td>
<td></td>
<td>33.7</td>
</tr>
</tbody>
</table>
Discussion

In the present study, population attributable fraction of IHD associated hypertension was calculated to use as quantities scale to evaluate burden of hypertension.

Approximately up to 33% of PAFs of IHD related to hypertension and PAFs of IHD were higher among males compared to females excluding Iran, Egypt, Algeria and Turkey.

According to Global Burden of Disease studies, the MENA regions had the highest IHD death rate after Eastern Europe and Central Asia and in this region IHD death occurs in younger age groups compared to the other regions (1).

In an earlier analysis, Martinuik et al. presented that 66% of cardiovascular diseases are attributable to hypertension in Western Pacific and South-east Asia, the fraction of IHD was 4-28% in male and 8-39% in female accordingly (37). Gaziano et al., reported that about 49% of IHD is attributable to high blood pressure and the PAFs of IHD mortality associated with hypertension was higher (61%) in Europe and central Asia compared to other regions i.e. less than 50% (38).

Danaei et al, showed that blood pressure was one of the leading risk factors for mortality and two-thirds (66%) of deaths are attributable to hypertension in US (39). Grau et al. demonstrated that population attributable fraction of CVD due to hypertension was 37% in Spain (40). In Ohasaki study it was reported that 47% of CVD mortality in middle age and 26% of CVD death in elderly were related to non-optimal blood pressure (41).

In Iran, Morocco, Algeria, Turkey and Egypt PAF of IHD due to hypertension are greater in females. It seems that diagnosis and treatment of hypertension is more common among females than males (21). Female’s hypertension may also increase by urbanization, stressful life style, changing eating habits, smoking following an increase of the related PAFs in the MENA region.

In the MENA region, up to 30% of IHD can be associated to hypertension. However, the treatment, control, diagnosis, awareness in developing countries is lower than develop countries. The degree of awareness in Egypt was about (20-50%), hypertension control was about (2-15%). Under diagnosis (33%) and under-treatment (76%) in United Arab Emirates, Blood Pressure to level of <140/90mmHg was 8% in Egypt and 5% in China (33, 42, 43).

Limitation

The first limitation of this study was lack of relevant date in MENA, the prevalence, incidence and mortality of hypertension are underestimate because of low diagnosis, control and treatment of patients and inaccessible health care center and valid statistic of pre-hypertension and hypertension.
The second limitations was use of estimate of hazard ratio from TLGS study since no measure of association from prospective studies were available for other countries of the region.

Conclusion

There is a large variation across the countries of MENA. Different prevention strategies should be considered to control this preventable risk factor. Following to increase prevalence of hypertension and the main role of hypertension to event IHD, It seems that use of primary and secondary prevention of hypertension impacts to reduction in large proportion of death by IHD and other chronic diseases. However, hypertension prevention policies are used in some countries, but the best way to reduce PAF of IHD associated with high blood pressure is implementation of national and international hypertension control protocols and following them.

References